
UDC 531/534: 001.8 

VARIATIONAL OPTIMIZATION PROBLEM3 

FOR EQUATIONS OF HYPERBOLIC TYPE 

PMM Vol. 36, Ng4, 1972. pp. 578-588 
L. V. Petukhov and V. A. Troitskii 

(Leningrad) 

(Received July 12, 1971) 

We consider the problems of optimizing control processes for systems described 

by second-order equations of hyperbolic type. posed in the form of the related 
two-dimensional Bolza problem of the calculus of variations. The necessary sta- 
tionarity conditions are obtained. It is shown that Lagrange multipliers, which 

can have discontinuities inside the region of admissible variations. correspond 

to the optimal solutions. 

Optimal problems for hyperbolic equations with conditions on the character- 
istics for functionals of the simplest form have been considered in [1.2] by means 

of Pontriagin’s maximum principle. 

1. Strrement of the problem. We consider a partial differential equation 
and relations given in a two-dimensional region Q (a < t < b, c < y < d) of the 

following form : 

L(z) = %~xx+ %2ZYY + 6% +azzv = f(+ Y, 2, u) (1.1) 

4% (x7 Y, u) = 0 (k=i,...,r<nt) (l-2) 

Here 2x7 zy, ZrX, 2 yy are the first and second partial derivatives of the continuous 

function z (x, y) being sought. By u = (ul (z, y), . . . , U, (s, y)) we mean an m- 
dimensional vector of piecewise-continuous controls uk (z, y). The coefficients a, = 

a, (z, y), a2 = a, (z, y), a,, = a,, (z, y), uz2 = u22 (2, Y) and the functions f = 
f (s, Y, z, u)and $k = $k (z, y, u) are continuous and have continuous partial deri- 

vatIves up to third order inclusive with respect to all the arguments for 5, y E fi. 
The initial and boundary conditions 

z (a, Y) = % (Y), z, (a, Y) = 'p2 (Y) (1.3) 

cpe(x, 2, zy) = 0 for Y =c (1.4) 
(PacG z, q/J = 0 for y = d 

are taken as specified. In these equalities the functions ‘pl (y), (ps (y), CPC (SY 21 z~) 
and $d (5, z, z!,) are continuous and have continuous partial derivatives up to third 
order inclusive with respect to all the arguments. 

We pose the following optimal problem: among the surfaces which inside region Q 

satisfies Eqs. (1.1) and (1.2), satisfy relations (1.3) for z = a , and satisfy dependencies 
(1.4) for y = c and y = d , find the one which minimizes the functional 
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Here z” (b, Y) = (z (b, yl”), . . . . z (b, yp”)) is a p-dimensional vector, where Y hOare 
given nuriibeis and gIo = C, yp” = d. The functions /,, = f,, (z, y, z, u) and X (z” 

(b, y)) are continuous together with their derivatives up to third order inclusive with 

respect to the arguments. The function (Pi = (Dh (y, z (b, y). z, (b, Y)) is piecewise- 

continuous and, moreover, (Pb (Y, 2, 2,) = (Pa., (y, 2, 2,) for Y F (yy. Y~+~) and 
Tbu (!I, 2, 2,) is continuous together with its derivatives up to third order inclusive. The 
discontinuities of the function vb (y, z, z,) at y = yu are taken as specified. 

2. Neceerrry condition for the ltrtionrrity of J. The Euler 
equrtion. For the stated problem we can prove lemmas on the imbedding of the 
surface E minimizing functional (1.5) into a one-parameter or multiparameter family 

of comparison surfaces. The necessary condition for the stationarity of functional J can 

be proved with the aid of these lemmas. Here it is used in the same form as in [3,4] for 

the related one-dimensional Bolza problem and in [S] for the multidimensional problem. 

For the functional J to take a minimal value on a surface E it is necessary to fulfill 
on it the equalitv 

in which 
AI = 0 (2.1) 

Ll’ (zu, 2, TC7 qd, ‘1 = %qc cx, z, ,$) + qd(Pd (x, 2, ZZJ) (2.3) 

L” (-.V, 2, 717 rl21 Y) = 71 Iz (a, Y) - ‘pl (Y)l + rlz [z, (a, y) - ‘p2, (y)] 

L, (c:.s:, zyu, zx, Z!,, I(, h, P7 z* Y) = fo + U(z) - v + f: pkgr 

where k=l 

h = li. (X. Y>, Pk = I!4 bt., Y), rlc = rlc (4, rid = Q! (X)? n1 = r1 (Y)> Q’ri2 CY) 

are undetermined Lagrange multipliers, AI is the total variation of functional 1. 
To compute the variation AI we take it that the whole region fi consists of ?I ele- 

mentary regions (l)i (i = 1, . . . . n); in each of them the functions z (5, Y)and h (z, Y) 

are continuous and have continuous derivatives, and the functions {ck (5, y) and u1 (x, 

y), . ..1 %I (z, y) are continuous. The elementary region oi has a piecewise-smooth 

boundary Si. The smooth segments Sij (j = 1. . . . . Ti) of this boundary can be lines 
of the following types : (1) a part of the boundary of region B, (2) a line of disconti- 
nuity of the control parameters, not coincident with the characteristic of Eq. (1. l), 
(3) a line of discontinuity of the control parameters, coinciding with the characteristic 
of Eq. (l.l), (4) a line of discontinuity of the multipliers h (z, Y). p”k (x, y), coincid- 
ing with the characteristic of (1.1). The number of noncharacteristic boundary lines, 
interior relative to region $1. is denoted by ql, while the number of characteristic 
boundary lines, by qz. We introduce the notation q = q1+q2. We assume the boundary 
S’i has 7i points Al,, where the smoothness is violated. At each of them any finite num- 
ber of noncharacteristic boundary lines can intersect with one or two characteristic boun- 
dary lines. Let I??,,. m,,. m, and M,, lhc” the number of elementary regions QI abutting 



Varlatlonal optimization problems for equations of hyperbolic type 547 

on the parts x = a, x = b, y = c and y = d of the boundary of region Q. 
Let us consider the individual terms on the left-hand side of equality (2.1). We begin 

with the variation AI,. Setting it up we have 

AI, = dxdy + f: si Lz8N ds (2.4) 8 
i=l 

Here 6.~. 6uk and &V are the variations of the functions z, zlk and of the boundary 
contour Si in the normal direction. After applying the Green-Riemann formula to the 

integral containing L (6~) and using formula (2.3), we obtain 

(2.5) 

i=l si 

+ [U&i6Zi - Cl&i6Ziy + (U,&i)y GZiyl tL?i + L,6 Nj ds 

ax dy &I ax 
n,=d.\.=x, n,=d.V=-ds 

Here n,, Q are the direction cosines of the normal to contour s; hr and s are coor- 

dinates counted off along the normal and along the tangent to the contour (the tangent 
is directed toward the side of the positive circuit of the contour, the normal is taken 

outward) ; 6N is the variation of the contour Si along the normal direction ; the index 
i denotes the membership of the corresponding functions in the elementary region Oi. 

Computing the variations AI, and AI,.we find 

The minus and plus superscripts denote the left and right limits of the function (yu. 
Substituting AI,,, AI, and AI, into equality (2.1). we obtain an expression containing 

terms depending on double integrals over the elementary regions (Ok, on integrals along 
the boundaries si of these regions, and on integrals along parts of the boundary of region 
ti, and terms independent of integrals. The usual arguments of the calculus of variations 

allow us to establish that to fulfill the stationarity condition (2.1) we need to equate 
each of these groups of terms to zero. Equating to zero the terms containing rhe multi- 

ple integrals and applying the fundamental lemma of the calculus of variations, we 
obtain the Euler equation 
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determining the multiplier h (s, y), and the relations 

(IC = 1,. _( m) (2.9) 

which must be fulfilled in each of the elementary regions CO;. i.e. at each point of region 
Q at which h (5, y) and pa (z, y) are continuous. Here the indices i have been omit- 

ted in Eqs. (2.8) and (2.9). 

3. The Brdmrnn- Welerctrrnr conditionr. To obtain the Erdmann-Wei- 
erstrass conditions on the boundary lines Si of the elementary regions roi and the bound- 

ary conditions at the boundary points of region Q we analyze the remaining terms in the 

variation AI. At first we pass in Ai to the coordinates s and ,V counted off along the 
tangent and along the normal to the boundary contour. Then for the derivatives of some 

function F (x, y) we have the formulas FN -.- Fbvtal - F,nS. F, == FNn2$ F,nl. 

We apply them for the computation of the derivatives 6z,, 6~ V, (u,,h) x, (a,, A) y 

occurring in relation (2.5) and we integrate by parts the terms containing the derivative 
62,. After carrying out these operations the expression for the variations takes the form 

AI = i i 1' {JI~~jhijGZij,~ + [( UlrLlij + U,n,ij) hij - (Alijhij).V - 2 (&ij&j)s + 
i=l i2z-L gij 

+ (Azij - rllij) [‘ij-‘1 6Sij + If0 + h,jL (Zij) - hijf] dNij}ds + 

?I 

+ hsl((Pbke - (Pb/;+) AYti + 5 ax 6’ (by YY”) = 0 
y=1 aZY 

Here we have introduced the notation A,, A2 and Aa defined by formulas (A. 3) (see 

the Appendix) in which uIo- = 0 and by pi we have denoted the radius of curvature of 
contour Si. We transform the variation: 6Zij, GZijN: 6z(Mij occurring in relation(3.1), 

by the formulas 
~Zii = ALij - z,jlvaNij, CsziiN = AziiN - zij.v,vsN (3.2) 

6Z lMii = AZ ~~~~~ - ZijxAxij- Zij,AtJij (3.3) 

where Azij are the variations of function z on the line Sij, AZ 1~1~~ is the variation of 
this function at the point iIP<j. and Axij and Ayij are the variations of the coordinates 

of point JIij Making use of equalities (3.2) and (3.3) we reduce expression (3.1) to 
the form 'i 

AI = i 2 ,I’ {A,hAzN + [(qtt, + u2tz2) h - (A&)-v - 2 (A&), L- 
i=l j=l Sij 
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+ (4 - AI) P-'Al AZ + Ifs - hf + 2A,h (2,~ - p-‘2,) + (3.4) 
+ A&(zss + P%) - ( 6% - Wdk +(A,Qv zN + 

+ 2 (4% zN + t-4 - 4) p-‘AzN] 6N) ~5 + 

‘i 

+ i 2 [A&AZ - A,h (z,Ax + zyA,)];:ljij+'+ 
i=l j=l 

+; “i’q%; acp 
AZ, (IL’, c) dx + 

k=1 .;k 
- AZ (x, 4 + $- 

Y J 

+ zxrqd [$Az(qd)+~Az,(s,d)] dxf 
k=l ’ 

"k 
Y 

Here and subsequently we have dropped the indices i and j and have used the equality 

- (alnl + a.&,) LzN = - 2. a,z, - ha,z, - 3L (alns - a&) z, _ - (3.5) 
- AlhzNN = - Lz~~z,, - ~u,,z~~ + 2 A$ (~,y - P-‘z~) + ! 

+ Ad (z,, - P-%v) 

and, on the basis of condition (2. l), have required that the variation be equated to zero. 

We go on to establish the Erdmann- Weierstrass conditions on the different parts of the 
boundary lines Sij of the elementary regions 0,. Let us consider a line of the second 

type and assume that it demarcates regions oi and @k.Functions relating to region oi 

are marked by a superscript minus, while functions relating to region Ok, by a superscript 
plus. Then, on passing through the line Sij, 

AZ- = AZ+ = AZ, Az,v- = AzN+ = Azv (3.6) 

6N- = 6Nf = 6N 

(these variations are independent). In (3.4) we pick out the terms containing AZ.” and 
equate them to zero: we obtain h-A,- - hiA,+ z 0. On a line of the second type 

A,- == A It # 0 . Therefore, 
h- x= h+ on Sij (3.7) 

Having picked out in (3.4) the terms depending on AZ, we find 

- 2A,h,- - A,h.v- + B,h- = -- 2A,h,+ - A&,+ + B,h+ (3.S) 

B, = alnl + u2rz2 - Aly - 24, - p-’ (A, - J,) 

Equality (3. ‘7) and the relation h,- = h,+ are valid on the line S,j. Consequently, the 

equality hY-= hx+ Ion Sij (3.9) 

is fulfilled. Finally, if in (3.4) we pick out the terms containing 6b’and take into ac- 
count the conditions obtained above, we obtain the relation 
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fo- - ii-f- = fo+ - k’f’ on Si; (X 10) 

It should be noted that the terms, occurring in variation (3.4). depending on AZ, Arc and 
Ay. computed at the points Nij for lines Sij of the second type, cancel each other out. 

Let us study a segment Sij of the third type. Since s;.; is a segment of a character- 
istic, the equality A r = 0 is fulfilled on it and the terms in (3.5) containing Az,~ va- 
nish. In this connection the nonequality A- =j= 1’ can hold on Sij . Equating the coef- 
ficients of variation AZ to zero, we obtain the equation 

- 2 A, [h- - hi], -L B, [h- - h+l r 0 on S,,; (3.11) 

determining the change A- - the discontinuity of multiplier the 
characteristic. Consequently, can found if we are given the condi- 

tions on boundary of region 52, which we 

‘Y 
shall obtain subsequently. If the line to be studied 

is fixed, then fiS = 0. In the case of a moving 

line the conditions have a rather complicated 
form and are studied below. 

Let us consider the point 111ij of intersection 
of two characteristics C’, and L’, (Fig.1). Any 

number of noncharacteristic lines can intersect 
at this point ; they do not introduce additional 

discontinuities in multiplier A, therefore, we can 
3 ) use the notation shown in Fig. 1. Picking out from 

Fig. 1 
(3.4) the terms relating to the point Mi,;, after 
cancelling the nonzero multiplier .,I ?v; - “1 ~f’~, 

we obtain the expression 
Ih, - I-, i- h., - h,l>Tj,( --- 0 (3.12) 

proving that the magnitude of the discontinuity of multiplier h on a characteristic does 

not change on passing through another characteristic. 

4. Boundary condition,. Let us now consider lines Sij of the first type, 
which are parts of the outer boundary of region (1. We start with the boundary :r ~~ n, 

c’ < y < d. Equating the coefficients of the variations AZ, (a. y) and AZ (a, y) to 

zero, we obtain two conditions apiece, 

.I,,,h,; (11, y) = +h. (/< = 1, * /!I,,) (4.1) 

- :IJL;;., (a, y) + (al ~- ill,,,.) A.^. (0, !/) = ‘II/i 

Analysis of the terms containing the variations AZ, (x, c) and AZ (5, c) for the bound- 
ary segment y = c, a < 17: < b, leads to the following results : 

ll,,L, (x, 4 - (a.2 - .4,,,) Ah. (2, c) = - TC.;a,PC / 8.: (4.2) 

If the points of intersection of the characteristic lines C, and C, shown in Fig.2 
occur on the boundary y = c , then we obtain the following relation for the discontinu- 
ities of multiplier h , which must be fulfilled at cc = zk, y = c: 

-.- lb, -i- &i-l’ 
h, -a, = 

i 

‘pCZU I*xir # 0 
(4.3) _ 

h, - hii+’ ‘p,zu IX”Xk =o 
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Here we have used formula (A. 10) from the Appendix. Analogous conditions are found 
for the boundary segment Y = d, a < x < b . At all its points we have 

-‘k& (& d) = qlk @Q / %, (k = 1,. . .I rnd) (4.4) 
‘%dhkt/ (x, 4 - (a2 - Aldu) A,, (x, 4 = - %ik a(Pd / 42 

At the points 5 = xk of intersection of the characteristics we obtain 

- h, t h,_,, 

AZ - hk = 

qdq, ix’zk + ’ 

h, - A,_,, ‘Pdq, i,r=2ek = ’ 
(4.5) 

The following conditions are obtained for the boundary segment z = b, c < y < d : 

A,bhk (h y) = - ‘%bk / dz, (k = 1,. ., m,,) (4.6) 

- ~lbbix (h y) + (% - Albx) hk (b, Y) = - ‘%)bk / aZ 

The abovementioned given points 

y = y”, (y = I, . . . . pj, y,” = c, ypo =: d 

occur on this segment and a certain number of moving points may appear. We number 

this as well as the other points from one to mb,where y, = C, and ymb = d (Fig. 3). 

Y 

*P 
Fig. 3 

Analysis of the terms in expression (3.4), corresponding to y = yk, t = b (k = 2,. . , 
mb - I), leads to the conditions 

h(b,Y,J= $(b, Yh. - 0) + + h (b, Y,, + 0) - 

1 3X - 
2 jf - a,,~ dz 6 Y,) 

(k=2,..., r,zb-l) (G.7 

For the point Yi = Ylo = c, x = b these conditions are replaced by the following: 

h (b - 0. c) = h (h c + ‘1 - f_& & (byxyf’) ’ - (4.8) 

Analogously, at the point Ymb = YPo = d, x = b 

a (b - 0, 4 = h (h d - 0) - v_&2 az (py c) 9 S.#O (4.9) 
’ P 21 

If the derivatives drp,/&, = 0 or &p,/&, = 0, then at the corner points the muli- 
plier h can have, respecrively. the discontinuity h (b - 0, c) # 1” (hs c f 0) or 
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h (b - 0, d) # h (b, d - 
Let us find the necessary condition in the case of moving characteristics. From (3.4) 

we write out the remaining terms and we take the terms containing AX and AY under 

the integral, for which we use formulas (A. 17) and (A.20). After the reduction of simi- 
lar terms we obtain no ‘% 

9 
2 2 J [fo 
is1 j-1 Sij 

-+((h++?r)fjtiNds+ 

+ ksl [61@% yk) A (b, yk) (2x- - zk+) + ‘pb- - qb+l AY, = o (4.10) 

2.x = 2, (b, Y, - O)‘, %+ = z, (h Yk + 0) 

Here no is the number of elementary regions formed by the characteristics, t,i is the 
number of smooth characteristic lines bounding the Wiq A- = h (5, Y - O), A+ = 1. 

9d’- 

(5, Y $ 0), where 5 and Y lie on the cha- 

racteristic Sij* 

Assume that there exists one moving point 

Yk#YuO (y=l , . . . , p). Then region 9 is 

divided by lines Qr and Qz made up, respec- 
tively, from k, and k, segments of the cha- 

racteristics (Fig. 4). By xi’ we denote the 
intersection of the i th segment of the cha- 

1 1 
I I 

racteristic line Q, with the boundary y = d 

I I ~ 
if ii, - i is odd, or with the boundary 

0 a d 3 
y = C. if k, - i is even (i = 2, . . . . kJ, 

Fig. 4 
and by xi” , the intersection of the j th seg- 
ment of characteristic line Qz with the 

boundary y = c if k, - j is odd, or with the boundary y = d if k, - j is even 

(i = 2, . ..) kP)* 
In expression (4.10). 6N depends, on each part of Sij , on the variation of the con- 

stants D, and D, (see (A.16)). The lines Q1 and Qa are continuous and issue from the 
point x = b, y = yk, therefore, in the end each of their segments is determined by this 
point. The variation of the ( kz - i + 1 )th segment of the characteristic line Q. (cc = 
1, 2) has the form 

GDak,-i+l = @a, iAYh_ (i = 1,. . ( k,) 
Here 

1 Fry @? Yk) @ = ‘I) 

(4.11) 

F,~ (x;,,, d)Fzx @;+,, 4 . . . PST (xi,, cl 
Flu (6, y,) (h - i is even ) 

@r, i = , Fzx @:+,v 4 F,x @:+,~ 4 . . For (x;r,~ 4 (4.12) 

Fzx (x;,,, c) FIX (z;,,, d) . . FsJc C$~ c) 

FIX (x;,,, c) FsX (x;+,T d) . . F,x b;, cl 
Flu (b, y,) (h - i is odd) 

F,, (z;+,, c) Fix (x;+,, 4 . . . F,x (~;;,3 d) 

@a, i = , FIX @;+,. ~1 Fzx b;+z~ 4 . . . Fzr k;;z, 4 
F,” (b, y,) (/i, - i is even) 

(4.13) 

FIX b;+,? d) Fzx (x’;,,, c) . . FIX & d) 
F,!, (6, y,) 

Fzx (x;+~, d) FIX (x;+,, c) . . . Fzx ($9 d) 
(h-2 - i is odd) 



Varlatlonal optlmlzatlon problems for equations of hyperbolic type 553 

Equating the coefficients of Ay, to zero, we obtain the last necessary condition 
XI 

1+1 

g1 ST 
0 ’ 1, i 

4’ L 
fo+ - fo- - + (h- + h+) (f+ - f) j .$ + 

I 

+ 5 @2, i xv’ [ro+ 
i,l *I 

3 

-fo- -+(h-+A+)(f+-f-)]‘$= (4.14) 

= ‘pb+ - (Pb- + all @, Yk) ?‘. (b, Yk) (2x+ - 2x-) = 0 

Here 21’ = Xl0 = a, 2;,+l = J; +1 = b 
1 

8 = 
1 

( 

IF,,( (kl--i iseven) 

[F,J jkl - i is odd ) 

ea = 1 

lFluJ (ka - i is odd) 

jF,J (ka - i is even) 

Appendix. We consider the following hyperbolic differential equation [6, 71: 

a11zrx + wu,y + =2azg1/ + a1zx + %Zu = f (5, Y, 2, u) (A.l) 

Here we have used the notation of Sect. 1. We pass to the new variables s and N 
counted off along the tangent and the normal to curve C. We obtain 

Al’NN 4 2‘4& + ‘Q* ;t- BZN + (- a1ns + a2n1- 2PA,) ZS = f (A.2) 
Al = a11n1s +-alnnlnz + al?n22 

Aa = - allnlna + 1/2alz @I’- - nz2) + a>gzln~ (A. 3) 
A3 = a~& - al2n1n2 + u?yn12 

B = am1 + am? + p-‘A3 

Here p is the rdius of curvature of C ; nl and n2 are the direction cosines of the nor- 

mal. By z‘ and z+ we denote the value of function z . to the left and to the right of 

curve C as we move along it in the direction of increasing s. Let z together with its 

derivative zN be continuous on passing through C. Then, the derivatives zS, z.+v, zgg 

are continuous. For zNN we have 

A, tzNNl= [ti, [z& = Z;!V - &v, [!I = f- - i’ (A.4) 

Consequently, [zNN ] # 0 if [f] # 0 and line C is not a solution of Ihe equation 

(A. 5) 

i.e. is not a characteristic of Eq. (A. 1). For a continuous right-hand side of Eq. (A. 1) 
the derivative zNN can have a finite or an infinite discontinuity only on a characteris- 
tic line. 

Having differentiated Eq. (A. 2) with respect to N under the condition that C is a 
characteristic, we obtain the equation 

24 bNNls -t B byNl = [fNl (A. 6) 

showing that breaks in the continuity of the function zNN can arise from the boundary 
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conditions and from the discontinuity of the function f,,,. If z is continuous but ~,v is 
discontinuous on passing through the line C, this line must be a characteristic, and‘the 
magnitude of the discontinuity [z,v] satisfies the differential equation 

2A, [zlvlS + B Izgl = 111 (A. 7) 

Thus the source of the discontinuity of function z,v may be both the boundary conditions 
as well as the discontinuity of the right-hand side. If the function z is discontinuous, 

then for the magnitude of the discontinuity [z] we obtain the equation 

%A, [z], + (B - A,,v) [z] = 0 (A. 8) 

showing that the discontinuities of function z can arise only as a result of the boundary 

conditions. A formula analogous to (A, 8) (without the term containing A,,v) occurs in 

c71. 
The coefficient A2 of the derivative in Esq. (A. 6)-(A, 8) for the hyperbolic equa- 

tion (A. 1) for which a% - 4n 11u22 > d, is nonzero on characteristics. The equality 

A, = 0 defines two families of curves which may be taken as coordinate lines. In this 

case, instead of Eq, (A. 1) we have Eq. (1.1) which we study subsequently. For it the 
equations for the characteristic have the form 

dy_ 
dX 

-+ 2, v z<o (A. 9) 

and define a family of curves C, with a positive slope dy / dz > 0 and a family of cur- 

ves C, with a negative slope dy / d.c < 0. It can be shown that through each point, exc- 
ept the corner points, of the rectangular region 62 (n < z < b, c < y < d). there pass two 

characteristics C1 and C,, while through the corner points, one characteristic C, or C,. 
Let us compute the derivatives d.c I ds, dy / ds and the coefficients Ai on the char- 

acteristics. Directing s towards tile increasing y, we have 

(A. 10) 

Here the upper sign is taken for the family C, (u = I), the lower, for the family C, (a = 
2). Carrying out analogous computations for the boundary lines, we find: 

on the line ~1 = L’ (counting s in the direction of increasing .c’) 

&/ds -= 1, d!/ ,’ ds ~~ 0, A,, :z u2? (x, c). ilgC = (11, (-c, C) (A. 11) 

on the line y = d (counting s in the direction of decreasing ,(.) 

d.z / ds :m: --1, dy /’ ds = 0, Alrl -= tlS2 (.r. d), A3,j = ol, (5, d) (A. 12) 

on the line zz = a (counting s in the direction of decreasing y) 

dx / ds = 0, dy / d.~ = -1, Ala = alI (a, y), Asa = az2 (a, y) (A. 13) 

on the line x = b (counting s in the direction of increasing y) 

dx/ds=O,dy/ds=i,A lb = %I (b, Y), Ash = ~22 (h Y) (A. 14) 
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Fig. 5 

(F ax~1C, + ~ay%C,) SNll= 6D, (A* 16) 

I _ 

z+Ax x 
From this we obtain 8N, and 8Ns. If we 
differentiate 6N, with respect to s,, and 

Al with respect to N,, then for C1 and 

C, we can establish the relation 

Let us consider the variation of the families of characteristics C1 and Cz. Suppose that 
the equations 

F, (z, y? = D, (a = 1, 2) (A.15) 

for the families Cr and C, have been 

found. Then the variation of these fami- 
lies depend upon the variation of the con- 

stants D, and Dz. Retaining only the terms 

of the first order of smallness, we obtain 

2A,6N, = AIN 8N (A.171 

Let us consider the variation of the point of intersection of the characteristics C, and 

C2 (Fig. 5). To within terms of the first order of smallness we have 

*z 1~~~ = %$NI - nac,*r + nro,&Ns + ~,*s (A. 18) 

*y Ihlij = %,~Nr + nic,A1 + n,c,aNs - n,csAs 

From Fig. 5 we find 
2 

Q +I = 
%c, - 

a 
%Z, &, - &, 

2n n ICI ac, = - %*%c. (A. 19) 

A, = tg ybN, (a = 1, 2) 

Substituting expressions (A. 19) into (A. 18), we obtain 

1 
A2 IMii = 2n,c 6Nl + 

1 
2nlc 6N2 

I * 
(A. 20) 

1 1 
*’ ‘Mij = 2nzr, SNI + 2n.2C, 6Nz 
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