VARIATIONAL OPTIMIZATION PROBLEMS
 FOR EQUATIONS OF HYPERBOLC TYPE

PMM Vol. 36, N84, 1972, pp. 578-588
L. V. Petukhov and V. A. Troitskii
(Leningrad)

(Received July 12, 1971)
We consider the problems of optimizing control processes for systems described by second-order equations of hyperbolic type, posed in the form of the related two-dimensional Bolza problem of the calculus of variations. The necessary stationarity conditions are obtained. It is shown that Lagrange multipliers, which can have discontinuities inside the region of admissible variations, correspond to the optimal solutions.

Optimal problems for hyperbolic equations with conditions on the characteristics for functionals of the simplest form have been considered in [1,2] by means of Pontriagin's maximum principle.

1. Statement of the problem. We consider a partial differential equation and relations given in a two-dimensional region $\Omega(a \leqslant x \leqslant b, c \leqslant y \leqslant d)$ of the following form:

$$
\begin{gather*}
L(z)=a_{11} z_{x x}+a_{22} z_{y y}+a_{1} z_{x}+a_{2} z_{y}=f(x, y, z, u) \tag{1.1}\\
\psi_{k}(x, y, u)=0 \quad(k=1, \ldots, r<m) \tag{1.2}
\end{gather*}
$$

Here $z_{x}, z_{y}, z_{x x}, z_{y y}$ are the first and second partial derivatives of the continuous function $z(x, y)$ being sought. By $u=\left(u_{1}(x, y), \ldots, u_{m}(x, y)\right)$ we mean an m dimensional vector of piecewise-continuous controls $u_{k}(x, y)$. The coefficients $a_{1}=$ $a_{1}(x, y), a_{2}=a_{2}(x, y), a_{11}=a_{11}(x, y), a_{22}=a_{22}(x, y)$ and the functions $f=$ $f(x, y, z, u)$ and $\psi_{k}=\psi_{k}(x, y, u)$ are continuous and have continuous partial derivatives up to third order inclusive with respect to all the arguments for $x, y \in \Omega$. The initial and boundary conditions

$$
\left.\begin{array}{c}
z(a, y)=\varphi_{1}(y), \quad z_{x}(a, y)=\varphi_{2}(y) \\
\varphi_{c}\left(x, z, z_{y}\right)=0 \tag{1.4}\\
\varphi_{a}\left(x, z, z_{y}\right)=0
\end{array} \quad \text { for } y=c\right\}
$$

are taken as specified. In these equalities the functions $\varphi_{1}(y), \varphi_{2}(y), \varphi_{c}\left(x, z, z_{y}\right)$ and $\varphi_{d}\left(x, z, z_{y}\right)$ are continuous and have continuous partial derivatives up to third order inclusive with respect to all the arguments.

We pose the following optimal problem: among the surfaces which inside region Ω satisfies Eqs. (1.1) and (1.2), satisfy relations (1.3) for $x=a$, and satisfy dependencies (1.4) for $y=c$ and $y=d$, find the one which minimizes the functional

$$
\begin{equation*}
J=\iint_{\Omega} f_{0} d x d y+\int_{c}^{d} \varphi_{b} d y+\chi\left(z^{\circ}(b, y)\right) \tag{1.5}
\end{equation*}
$$

Here $z^{\circ}(b, y)=\left(z\left(b, y_{1}{ }^{\circ}\right), \ldots, z\left(b, y_{p}{ }^{\circ}\right)\right)$ is a p-dimensional vector, where $y_{k}{ }^{\circ}$ are given nuribers and $y_{1}{ }^{\circ}-c, y_{p}{ }^{\circ}=d$. The functions $f_{0}=f_{0}(x, y, z, u)$ and $\chi\left(z^{\circ}\right.$ $(b, y))$ are continuous together with their derivatives up to third order inclusive with respect to the arguments. The function $\varphi_{h}=\mathscr{C}_{h}\left(y, z(b, y), z_{x}(b, y)\right)$ is piecewisecontinuous and, moreover, $\varphi_{b}\left(y, z, z_{x}\right)=\varphi_{b \gamma}\left(y, z, z_{x}\right)$ for $y \in\left(y_{\gamma}, y_{\gamma+1}\right)$ and $\varphi_{b r}\left(y, z, z_{x}\right)$ is continuous together with its derivatives up to third order inclusive. The discontinuities of the function $\varphi_{b}\left(y, z, z_{x}\right)$ at $y=y_{\gamma}$ are taken as specified.
2. Necessary condition for the itationarity of \mathcal{J}. The Euler equation. For the stated problem we can prove lemmas on the imbedding of the surface E minimizing functional (1.5) into a one-parameter or multiparameter family of comparison surfaces. The necessary condition for the stationarity of functional J can be proved with the aid of these lemmas. Here it is used in the same form as in [3,4] for the related one-dimensional Bolza problem and in [5] for the multidimensional problem.

For the functional J to take a minimal value on a surface E it is necessary to fulfill on it the equality
in which

$$
\begin{equation*}
\Delta I=0 \tag{2.1}
\end{equation*}
$$

$$
\begin{gather*}
I=I_{0}+I_{1}+I_{2}=\chi\left(z^{\circ}(b, y)\right)+\int_{a}^{b} L_{1}{ }^{\prime} d x+\int_{c}^{d} L_{1}^{\prime \prime} d y+\iint_{\Omega} I_{2} d x d y \tag{2.2}\\
L_{1}^{\prime}\left(z_{y}, z, \eta_{c}, \eta_{d}, x\right)=\eta_{c} \varphi_{c}\left(x, z, z_{y}\right)+\eta_{d} \varphi_{d}\left(x, z, z_{y}\right) \tag{2.3}\\
L_{1}^{\prime \prime}\left(z_{x}, z, \eta_{1}, \eta_{2}, y\right)=\eta_{1}\left[z(a, y)-\varphi_{1}(y)\right]+\eta_{2}\left[z_{x}(a, y)-\varphi_{2}(y)\right] \\
L_{2}\left(z_{y, y}, z_{y y}, z_{x}, z_{l y}, u, \lambda, \mu, x, y\right)=f_{0}+\lambda L(z)-\lambda f+\sum_{k=1}^{r} \mu_{k} \psi_{k}
\end{gather*}
$$

where
$\lambda=\lambda(x, y), \mu_{k}=\mu_{k}(x, y), \eta_{c}=\eta_{c}(x), \eta_{d}=\eta_{l}(x), \eta_{1}=\eta_{1}(y), \eta_{2}=\eta_{\eta_{2}}(y)$ are undetermined Lagrange nultipliers, ΔI is the total variation of functional I.

To compute the variation ΔI we take it that the whole region Ω consists of n elementary regions $\omega_{i}(i=1, \ldots, n)$; in each of them the functions $z(x, y)$ and $\lambda(x, y)$ are continuous and have continuous derivatives, and the functions $\mu_{k}(x, y)$ and $u_{1}(x$, $y), \ldots, u_{m}(x, y)$ are continuous. The elementary region ω_{i} has a piecewise-smooth boundary S_{i}. The smooth segments $S_{i j}\left(j=1, \ldots, \tau_{i}\right)$ of this boundary can be lines of the following types: (1) a part of the boundary of region Ω, (2) a line of discontinuity of the control parameters, not coincident with the characteristic of $E q$. (1.1), (3) a line of discontinuity of the control parameters, coinciding with the characteristic of Eq. (1.1), (4) a line of discontinuity of the multipliers $\lambda(x, y), \mu_{k}(x, y)$, coinciding with the characteristic of (1.1). The number of noncharacteristic boundary lines, interior relative to region Ω, is denoted by q_{1}, while the number of characteristic boundary lines, by q_{2}. We introduce the notation $q=q_{1}+q_{2}$. We assume the boundary S_{i} has τ_{i} points $M_{i j}$ where the smoothness is violated. At each of them any finite number of noncharacteristic boundary lines can intersect with one or two characteristic boundary lines. Let $m_{a}, m_{l,}, m_{c}$ and $m_{,}$be the number of elementary regions $\boldsymbol{\omega}_{i}$ abutting
on the parts $x=a, x=b, y=c$ and $y=d$ of the boundary of region Ω.
Let us consider the individual terms on the left-hand side of equality (2.1). We begin with the variation ΔI_{2}. Setting it up we have

$$
\begin{equation*}
\Delta I_{2}=\iint_{\Omega}\left[\frac{\partial L_{2}}{\partial z} \delta z+\lambda L(\delta z)+\sum_{k=1}^{m} \frac{\partial L_{2}}{\partial u_{k}} \delta u_{k}\right] d x d y+\sum_{i=1}^{n} \oint_{S_{i}} L_{2} \delta N d s \tag{2.4}
\end{equation*}
$$

Here $\delta z . \delta u_{k}$ and δN are the variations of the functions z, u_{k} and of the boundary contour S_{i} in the normal direction. After applying the Green-Riemann formula to the integral containing $L(\delta z)$ and using formula (2.3), we obtain

$$
\begin{gather*}
\Delta I_{2}=\sum_{i=1}^{n} \int_{\omega_{i}}^{n}\left\{\left[\left(a_{11} \lambda_{i}\right)_{x x}+\left(a_{22} \lambda_{i}\right)_{y y}-\left(a_{1} \lambda_{i}\right)_{x}-\left(a_{2} \lambda_{i}\right)_{y}-\frac{\partial f}{\partial z} \lambda_{i}+\frac{\partial f_{0}}{\partial z}\right] \delta z_{i}+\right. \\
\left.\quad+\sum_{k=1}^{n n}\left[\sum_{x=1}^{r} \mu_{x i} \frac{\partial \psi_{x}}{\partial u_{k i}}+\frac{d j_{0}}{\partial u_{k i}}-\lambda_{i} \frac{\partial!}{\partial u_{k}}\right] \delta u_{k i}\right\} d x d y+ \tag{2.5}\\
+\sum_{i=1}^{n} \int_{S_{i}}\left\{\left[a_{1} \lambda_{i} \delta z_{i}+a_{11} \lambda_{i} \delta z_{i x x}-\left(a_{11} \lambda_{i}\right)_{x} \delta z_{i}\right] n_{1 i}+\right. \\
\left.+\left[a_{2} \lambda_{i} \delta z_{i}-a_{22} \lambda_{i} \delta z_{i y}+\left(a_{22} \lambda_{i}\right)_{y} \delta z_{i y}\right] n_{2 i}+L_{2} \delta N\right\} d s \\
n_{1}=\frac{d x}{d N}=\frac{d y}{d s}, \quad n_{2}=\frac{d y}{d i V}=-\frac{d x}{d s}
\end{gather*}
$$

Here n_{1}, n_{2} are the direction cosines of the normal to contour $S ; N$ and s are coordinates counted off along the normal and along the tangent to the contour (the tangent is directed toward the side of the positive circuit of the contour, the normal is taken outward); δN is the variation of the contour S_{i} along the normal direction; the index i denotes the membership of the corresponding functions in the clementary region ω_{i}. Computing the variations ΔI_{1} and ΔI_{0}, we find

$$
\begin{gather*}
\Delta I_{1}=\int_{c}^{d}\left(\eta_{1} \delta z+\eta_{2} \delta z_{x}\right) d y+\int_{a}^{b} \eta_{c}\left(\frac{\partial \varphi_{c}}{\partial z} \delta z+\frac{\partial \varphi_{c}}{d z_{y}} \delta z_{y}\right) d x+ \tag{2.6}\\
+\int_{i}^{b} \eta_{l}\left(\frac{\partial \varphi_{l}}{\partial z} \delta z+\frac{\partial \varphi_{i l}}{\partial z_{y}} \delta z_{y}\right) d x+\int_{c}^{d}\left(\frac{\partial \varphi_{b}}{\partial z} \delta z+\frac{\partial \varphi_{b}}{\partial z_{y}} \delta z_{y j}\right) d y+\sum_{k=1}^{m_{b}}\left(\varphi_{\varphi_{b}}-\varphi_{b_{k}}^{+}\right) \Delta y_{k} \\
\Delta I_{0}=\sum_{\gamma=1}^{p} \frac{\partial \chi}{\partial z_{\gamma}} \delta z\left(b, y_{\gamma}{ }^{\circ}\right) \tag{2.7}
\end{gather*}
$$

The minus and plus superscripts denote the left and right limits of the function $\varphi_{0} \cdot$ Substituting $\Delta I_{0}, \Delta I_{1}$ and ΔI_{2} into equality (2.1), we obtain an expression containing terms depending on double integrals over the elementary regions ω_{i}, on integrals along the boundaries S_{i} of these regions, and on integrals along parts of the boundary of region Ω, and terms independent of integrals. The usual arguments of the calculus of variations allow us to establish that to fulfill the stationarity condition (2.1) we need to equate each of these groups of terms to zero. Equating to zero the terms containing the multiple integrals and applying the fundamental lemma of the calculus of variations, we obtain the Euler equation

$$
\begin{equation*}
M(\lambda)=\left(a_{11} \lambda\right)_{x x}+\left(a_{22} \lambda\right)_{y y}-\left(a_{1} \lambda\right)_{x}-\left(a_{2} \lambda\right)_{y}=(\partial f / \partial z) \lambda-\partial f_{0} / \partial z \tag{2.8}
\end{equation*}
$$

determining the multiplier $\lambda(x, y)$, and the relations

$$
\begin{equation*}
\sum_{\alpha=1}^{r} \mu_{\alpha} \frac{\partial \psi_{\alpha}}{\partial u_{k}}+\frac{\partial f_{0}}{\partial u_{k}}-\lambda \frac{\partial f}{\partial u_{k}}=0 \quad(k=1, \ldots, m) \tag{2.9}
\end{equation*}
$$

which must be fulfilled in each of the elementary regions ω_{i}, $\mathrm{i}_{.}$. at each point of region Ω at which $\lambda(x, y)$ and $\mu_{\alpha}(x, y)$ are continuous. Here the indices i have been omitted in Eqs. (2.8) and (2.9).
3. The Erdmann-Weieritrass conditions. To obtain the Erdmann-Weierstrass conditions on the boundary lines S_{i} of the elementary regions ω_{i} and the boundary conditions at the boundary points of region Ω we analyze the remaining terms in the variation ΔI. At first we pass in ΔI to the coordinates s and N counted off along the tangent and along the normal to the boundary contour. Then for the derivatives of some function $F(x, y)$ we have the formulas $F_{x}:=F_{N} n_{1}-F_{s} n_{2}, F_{y}=F_{N} n_{2}+F_{s} n_{1}$. We apply them for the computation of the derivatives $\delta z_{x}, \delta z_{y},\left(a_{11} \lambda\right)_{x},\left(a_{22} \lambda\right)_{y}$ occurring in relation (2.5) and we integrate by parts the terms containing the derivative δz_{8}. After carrying out these operations the expression for the variations takes the form

$$
\begin{align*}
& \Delta I=\sum_{i=1}^{n} \sum_{j=1}^{\tau_{i}} \int_{i j}\left\{A_{1 i j} \lambda_{i j} \delta z_{i j, ~}+\left[\left(a_{1} n_{1 i j}+a_{2} n_{2 i j}\right) \lambda_{i j}-\left(A_{1 i j} \lambda_{i j}\right) \mathrm{v}-2\left(A_{2 i j} \lambda_{i j}\right)_{\mathrm{s}}+\right.\right. \\
& \left.\left.+\left(A_{3 i j}-A_{1 i j}\right) \rho_{i j}{ }^{-1}\right] \delta z_{i j}+\left[f_{0}+\lambda_{i j} L\left(z_{i j}\right)-\lambda_{i j} f\right] \delta N_{i j}\right\} d s+ \\
& +\sum_{i=1}^{n} \sum_{j=1}^{\tau_{i}}\left[A_{2} \lambda \delta z\right]_{M_{i j}}^{M_{i j}}+\int_{i}^{b}\left[\eta_{c} \frac{\partial \varphi_{c}}{\partial z} \delta z(x, c)+\eta_{c} \frac{\partial \varphi_{c}}{\partial z_{y}} \delta z_{y}(x, c)\right] d x+ \tag{3.1}\\
& +\int_{u}^{b}\left[\eta_{d} \frac{\partial \varphi_{l}}{\partial z} \delta z(x, d)+\eta_{d} \frac{\partial \varphi_{d}}{\partial z_{y}} \delta z_{y}(x, d)\right] d x+\int_{c}^{d}\left[\eta_{1} \delta z(a, y)+\right. \\
& +\eta_{2} \delta z_{y}(a, y) \left\lvert\, d y+\int_{:}^{d}\left[\frac{\partial \varphi_{b}}{\partial z} \delta z(b, y)+\frac{\partial \varphi_{b}}{\partial z_{x}} \delta z_{x}(b, y)\right] d y+\right. \\
& +\sum_{k=1}^{m_{b}}\left(\varphi_{b k^{-}}{ }^{-}-\varphi_{b i i^{+}}\right) \Delta y_{k}+\sum_{\gamma=1}^{p} \frac{\partial \chi}{\partial z_{\gamma}} \delta z\left(b, y_{\gamma}{ }^{\circ}\right)=0
\end{align*}
$$

Here we have introduced the notation A_{1}, A_{2} and A_{3} defined by formulas (A.3) (see the Appendix) in which $a_{12}=0$ and by ρ_{i} we have denoted the radius of curvature of contour S_{i}. We transform the variations $\delta z_{i j}, \delta z_{i j N},\left.\delta z\right|_{M_{i j}}$ occurring in relation(3.1), by the formulas

$$
\begin{gather*}
\delta z_{i j}=\Delta z_{i j}-z_{\imath j N} \delta N_{i j}, \delta z_{i j N}=\Delta z_{i j N}-z_{i j N N} \delta N \tag{3.2}\\
\left.\delta z\right|_{M_{i j}}=\left.\Delta z\right|_{M_{i j}}-z_{i j x} \Delta x_{i j}-z_{i j y} \Delta y_{i j} \tag{3.3}
\end{gather*}
$$

where $\Delta z_{i j}$ are the variations of function z on the line $S_{i j},\left.\Delta z\right|_{M_{i j}}$ is the variation of this function at the point $M_{i j}$, and $\Delta x_{i j}$ and $\Delta y_{i j}$ are the variations of the coordinates of point $M_{i j}$ Making use of equalities (3.2) and (3.3), we reduce expression (3.1) to the form

$$
\Delta I=\sum_{i=1}^{n} \sum_{j=1}^{\tau_{i}} \int_{S_{i j}}\left\{A_{1} \lambda \Delta z_{N}+\left[\left(a_{1} n_{1}+a_{2} n_{2}\right) \lambda-\left(A_{1} \lambda\right)_{\mathrm{v}}-2\left(A_{2} \lambda\right)_{\mathrm{s}}+\right.\right.
$$

$$
\begin{gather*}
\left.+\left(A_{3}-A_{1}\right) \rho^{-1} \lambda\right] \Delta z+\left[f_{0}-\lambda f+2 A_{2} \lambda\left(z_{s N}-\rho^{-1} z_{3}\right)+\right. \tag{3.4}\\
+A_{3} \lambda\left(z_{s s}+\rho^{-1} z_{N}\right)-\left(a_{1} n_{2}-a_{2} n_{1}\right) \lambda z_{s}+\left(A_{1} \lambda\right)_{N} z_{N}+ \\
\left.\left.+2\left(A_{2} \lambda\right)_{s} z_{N}+\left(A_{1}-A_{3}\right) \rho^{-1} \lambda z_{N}\right] \delta N\right\} d s+ \\
+\sum_{i=1}^{n} \sum_{j=1}^{\tau_{i}}\left[A_{2} \lambda \Delta z-A_{2} \lambda\left(z_{x} \Delta x+z_{y} \Delta y\right)\right]_{M_{i j}}^{M_{i j+1}}+ \\
+\sum_{k=1}^{m_{c}} \int_{x_{k}}^{x_{k+1}} \eta_{c}\left[\frac{\partial \varphi_{c}}{\partial z} \Delta z(x, c)+\frac{\partial \varphi_{c}}{\partial z_{y}} \Delta z_{y}(x, c)\right] d x+ \\
+\sum_{k=1}^{m_{d}} \int_{x_{k}}^{x_{k+1}} \eta_{d}\left[\frac{\partial \varphi_{d}}{\partial z} \Delta z(x, d)+\frac{\partial \varphi_{d}}{\partial z_{y}} \Delta z_{y}(x, d)\right] d x+ \\
+\sum_{k=1}^{m_{a}} \int_{y_{k+1}}^{y_{k+1}}\left[\eta_{1} \Delta z(a, y)+\eta_{2} \Delta z_{x}(a, y)\right] d y+\sum_{k=1}^{m_{b}} \int_{y_{k}}^{y_{k+1}}\left[\frac{\partial \varphi_{b}}{\partial z} \Delta z(b, y)+\right. \\
\left.+\frac{\partial \varphi_{b}}{\partial z_{x}} \Delta z_{x}(b, y)\right] d y+\sum_{k=1}^{m_{b}}\left(\varphi_{b k}--\varphi_{b k}{ }^{+}\right) \Delta y_{k}+\sum_{\gamma=1}^{p} \frac{\partial \chi}{\partial z_{\gamma}} \Delta z\left(b, y_{\gamma}^{\circ}\right)=0
\end{gather*}
$$

Here and subsequently we have dropped the indices i and j and have used the equality

$$
\begin{gather*}
-\left(a_{1} n_{1}+a_{2} n_{2}\right) \lambda z_{N}=-\lambda a_{1} z_{\mathfrak{r}}-\lambda a_{2} z_{y}-\lambda\left(a_{1} n_{2}-a_{2} n_{1}\right) z_{3} \tag{3.5}\\
-A_{1} \lambda z_{N N}=-\lambda a_{11} z_{x x}-\lambda a_{22} z_{\nu y}+2 A_{2} \lambda\left(z_{s . \mathrm{V}}-\rho^{-1} z_{s}\right)+ \\
+A_{3} \lambda\left(z_{s s}-\rho^{-1} z_{N}\right)
\end{gather*}
$$

and, on the basis of condition (2.1), have required that the variation be equated to zero.
We go on to establish the Erdmann-Weierstrass conditions on the different parts of the boundary lines $S_{i j}$ of the elementary regions ω_{i}. Let us consider a line of the second type and assume that it demarcates regions ω_{i} and ω_{k}. Functions relating to region ω_{i} are marked by a superscript minus, while functions relating to region ω_{k}, by a superscript plus. Then, on passing through the line $S_{i j}$,

$$
\begin{gather*}
\Delta z^{-}=\Delta z^{+}=\Delta z, \quad \Delta z_{N}^{-}=\Delta z_{N}^{+}=\Delta z_{\mathrm{V}} \tag{3.6}\\
\delta N^{-}=\delta N^{+}=\delta N
\end{gather*}
$$

(these variations are independent). In (3.4) we pick out the terms containing Δz_{V} and equate them to zero: we obtain $\lambda^{-} A_{1}{ }^{-}-\lambda^{+} A_{1}{ }^{+}=0$. On a line of the second type $\Lambda_{1}^{-}==\Lambda_{1}{ }^{+} \neq 0$. Therefore,

$$
\begin{equation*}
\lambda^{-}=\lambda^{+} \text {on } S_{i j} \tag{3.7}
\end{equation*}
$$

Having picked out in (3.4) the terms depending on Δz, we find

$$
\begin{gather*}
-2 A_{2} \lambda_{s}^{-}-A_{1} \lambda_{v}^{-}+B_{1} \lambda^{-}=-2 A_{2} \lambda_{s}^{+}-A_{1} \lambda_{v^{+}}+B_{1} \lambda^{+} \tag{3.8}\\
B_{1}=a_{1} n_{1}+a_{2} n_{2}-A_{1 . v}-2 A_{25}-\rho^{-1}\left(A_{1}-A_{3}\right)
\end{gather*}
$$

Equality (3.7) and the relation $\lambda_{s}{ }^{-}=\lambda_{s}{ }^{+}$are valid on the line $S_{i j}$. Consequently, the equality

$$
\begin{equation*}
\lambda_{\mathrm{v}}{ }^{-}=\lambda_{\mathrm{N}^{+}}{ }^{\text {bon }} S_{i j} \tag{3.9}
\end{equation*}
$$

is fulfilled. Finally, if in (3.4) we pick out the terms containing δN and take into account the conditions obtained above, we obtain the relation

$$
\begin{equation*}
f_{0}{ }^{-}-\lambda^{-} f^{-}=f_{0}^{+}-\lambda^{+} f^{+} \text {on } S_{i j} \tag{3.10}
\end{equation*}
$$

It should be noted that the terms, occurring in variation (3.4), depending on $\Delta z, \Delta x$ and Δy, computed at the points $M_{i j}$ for lines $S_{i j}$ of the second type, cancel each other out.

Let us study a segment $S_{i j}$ of the third type. Since $S_{i j}$ is a segment of a characteristic, the equality $A_{1}=0$ is fulfilled on it and the terms in (3.5) containing Δz_{N} vanish. In this connection the nonequality $\lambda^{-} \neq \lambda^{+}$can hold on $S_{i j}$. Equating the coefficients of variation Δz to zero, we obtain the equation

$$
\begin{equation*}
\left.\left.-2 A_{2} \mid \lambda^{-}-\lambda^{+}\right]_{s} \div B_{1} \mid \lambda^{-}-\lambda^{+}\right]=0 \text { on } S_{i j} \tag{3.11}
\end{equation*}
$$

determining the change $\lambda^{-}-\lambda^{+}$in the discontinuity of the multiplier λ along the characteristic. Consequently, this discontinuity can be found if we are given the conditions on the boundary of the region Ω, which we

Fig. 1
we obtain the expression

$$
\begin{equation*}
\left[\lambda_{1}-\lambda_{2}+\lambda_{3}-\lambda_{1}\right]_{\mathrm{M}_{i j}}=0 \tag{3.12}
\end{equation*}
$$

proving that the magnitude of the discontinuity of multiplier λ on a characteristic does not change on passing through another characteristic.
4. Boundary conditions. Let us now consider lines $S_{i j}$ of the first type, which are parts of the outer boundary of region Ω. We start with the boundary $x \ldots a$, $c \leqslant y \leqslant d$. Equating the coefficients of the variations $\Delta z_{x}(a, y)$ and $\Delta z(a, y)$ to zero, we obtain two conditions apiece,

$$
\begin{gather*}
A_{1, n} \lambda_{h i}(a, y)=\eta_{2 k} \quad\left(k=1, \ldots m_{n}\right) \tag{4.1}\\
-A_{1, k} \lambda_{k i x}(a, y)+\left(a_{1}-A_{1 a \cdot}\right) \lambda_{k}(a, y)=\eta_{1 k}
\end{gather*}
$$

Analysis of the terms containing the variations $\Delta z_{y}(x, c)$ and $\Delta z(x, c)$ for the boundary segment $y=c, a \leqslant x \leqslant b$, leads to the following results :

$$
\begin{gather*}
A_{1 \mathrm{c}} \lambda_{k}(x, c)=\eta_{c h} \partial \varphi_{c} / \partial z_{y} \quad\left(k=1, \ldots, m_{c}\right) \\
A_{1 c} \lambda_{i, y}(x, c)-\left(a_{2}-A_{1 c y}\right) \lambda_{k}(x, c)=-\eta_{c, i} \partial P_{c} / \partial z \tag{4.2}
\end{gather*}
$$

If the points of intersection of the characteristic lincs C_{1} and C_{2} shown in Fig. 2 occur on the boundary $y=c$, then we obtain the following relation for the discontinuities of multiplier λ, which mast be fulfilled at $x=x_{k}, y=c$:

$$
\lambda_{x}-\lambda_{i}= \begin{cases}-\lambda_{x}+\lambda_{k-1}, & \left.\varphi_{c z_{y}}\right|_{x=x_{k}} \neq 0 \tag{4.3}\\ \lambda_{x}-\lambda_{k-1}, & \left.\varphi_{c z_{j}}\right|_{x=x_{h}}=0\end{cases}
$$

Here we have used formula (A.10) from the Appendix. Analogous conditions are found for the boundary segment $y=d, a \leqslant x \leqslant b$. At all its points we have

$$
\begin{gather*}
A_{1 d} \lambda_{k}(x, d)=\eta_{I k} \partial \varphi_{d} / \partial z_{y} \quad\left(k=1, \ldots, m_{d}\right) \tag{4.4}\\
A_{1 d} \lambda_{k y}(x, d)-\left(a_{2}-A_{1 d y}\right) \lambda_{k}(x, d)=-\eta_{d k} \partial \varphi_{d} / \partial z
\end{gather*}
$$

At the points $x=x_{k}$ of intersection of the characteristics we obtain

$$
\lambda_{x}-\lambda_{k}= \begin{cases}-\lambda_{x}+\lambda_{k-1}, & \left.\varphi_{d z_{y}}\right|_{x=x_{k}} \neq 0 \tag{4.5}\\ \lambda_{\alpha}-\lambda_{i-1}, & \left.\varphi_{d z_{y}}\right|_{: c=x_{k}}=0\end{cases}
$$

The following conditions are obtained for the boundary segment $x=b, c \leqslant y \leqslant d$:

$$
\begin{gather*}
A_{1 b} \lambda_{k}(b, y)=-\partial \varphi_{b k} / \partial z_{x} \quad\left(k=1, \ldots, m_{b}\right) \tag{4.6}\\
-A_{1 b} \lambda_{k x}(b, y)+\left(a_{1}-A_{1 b x}\right) \lambda_{k}(b, y)=-\partial \varphi_{b k} / \partial z
\end{gather*}
$$

The above-mentioned given points

$$
y=y_{\gamma}^{\circ}(\gamma=1, \ldots, p), \quad y_{1}^{\circ}=c, \quad y_{p}^{\circ}=d
$$

occur on this segment and a certain number of moving points may appear. We number this as well as the other points from one to m_{b}, where $y_{1}=c$, and $y_{m_{b}}=d$ (Fig. 3).

Fig. 2

Fig. 3

Analysis of the terms in expression (3.4), corresponding to $y=y_{k}, x=b(k=2, \ldots$, $m_{b}-1$), leads to the conditions

$$
\begin{aligned}
& \lambda\left(b, y_{k}\right)=\frac{1}{2} \lambda\left(b, y_{k}-0\right)+\frac{1}{2} \lambda\left(b, y_{n}+0\right)- \\
& -\frac{1}{2 \sqrt{-a_{11} a_{22}}} \frac{\partial \chi}{\partial z\left(b, y_{k}\right)} \quad\left(k=2, \ldots, m_{b}-1\right)\left({ }^{\prime} .7\right.
\end{aligned}
$$

For the point $y_{1}=y_{1}{ }^{\circ}=c, x=b$ these conditions are replaced by the following:

$$
\begin{equation*}
\lambda(b-0, c)=\lambda(b, c+0)-\frac{1}{\sqrt{-a_{11} a_{22}}} \frac{\partial \chi}{\partial z\left(b, y_{1}{ }^{\circ}\right)}, \quad \frac{\partial \varphi_{c}}{\partial z_{y}} \neq 0 \tag{4.8}
\end{equation*}
$$

Analogously, at the point $y_{m_{b}}=y_{p}{ }^{\circ}=d, x=b$

$$
\begin{equation*}
\lambda(b-0, d)=\lambda(b, d-0)-\frac{1}{\sqrt{-a_{11} a_{22}}} \frac{\partial \chi}{\partial z\left(b, y_{p}^{c}\right)}, \quad \frac{\partial \varphi_{a}}{\partial z_{y}} \neq 0 \tag{4.9}
\end{equation*}
$$

If the derivatives $\partial \varphi_{c} / \partial z_{y}=0$ or $\partial \varphi_{d} / \partial z_{y}=0$, then at the corner points the muliplier λ can have, respecrively, the discontinuity $\lambda(b-0, c) \neq \lambda(b, c+0)$ or
$\lambda(b-0, d) \neq \lambda(b, d-0)$.
Let us find the necessary condition in the case of moving characteristics. From (3.4) we write out the remaining terms and we take the terms containing Δx and Δy under the integral, for which we use formulas (A.17) and (A.20). After the reduction of similar terms we obtain

$$
\begin{gather*}
+\sum_{k=1}^{m}\left[a_{11}\left(b, y_{k}\right) \lambda\left(b, y_{k}\right)\left(z_{x}^{-}-z_{k}^{+}\right)+\varphi_{b}^{-}-\varphi_{b}^{+}\right] \Delta y_{k}=0 \tag{4.10}\\
z_{x}^{-}=z_{x}\left(b, y_{x}-0\right)^{\prime}, \quad z_{x}^{+}=z_{x}\left(b, y_{k}+0\right)
\end{gather*}
$$

Here n_{0} is the number of elementary regions formed by the characteristics, $\tau_{0 i}$ is the number of smooth characteristic lines bounding the $\omega_{i}, \lambda^{-}=\lambda(x, y-0), \lambda^{+}=\lambda$.

Fig. 4
($x, y+0$), where x and y lie on the characteristic $S_{i j}$.

Assume that there exists one moving point $y_{k} \neq y_{\gamma}{ }^{0}(\gamma=1, \ldots, p)$. Then region Ω is divided by lines Q_{1} and Q_{2} made up, respectively, from k_{1} and k_{2} segments of the characteristics (Fig. 4). By x_{i}^{\prime} we denote the intersection of the i th segment of the characteristic line Q_{1} with the boundary $y=d$ if $k_{1}-i$ is odd, or with the boundary $y=c$ if $k_{1}-i$ is even $\left(i=2, \ldots, k_{1}\right)$, and by $x_{j}^{\prime \prime}$, the intersection of the j th segment of characteristic line Q_{2} with the
boundary $y=c$ if $k_{2}-j$ is odd, or with the boundary $y=d$ if $k_{2}-j$ is even $\left(j=2, \ldots, k_{2}\right)$.

In expression (4.10), δN depends, on each part of $S_{i j}$, on the variation of the constants D_{1} and D_{2} (see (A.16)). The lines Q_{1} and Q_{2} are continuous and issue from the point $x=b, y=y_{k}$, therefore, in the end each of their segments is determined by this point. The variation of the $\left(k_{\alpha}-i+1\right)$ th segment of the characteristic line $Q_{\alpha}(\alpha=$ 1,2) has the form

$$
\begin{equation*}
\delta D_{\alpha k_{\alpha}-i+1}=\Theta_{\alpha, i} \Delta y_{k} \quad\left(i=1, \ldots, k_{\alpha}\right) \tag{4.11}
\end{equation*}
$$

Here
$\Theta_{1, i}=\left\{\begin{array}{l}F_{1 y}\left(b, y_{k}\right) \quad\left(i=k_{1}\right) \\ \frac{F_{1 x}\left(x_{i+1}^{\prime}, d\right) F_{2 x}\left(x_{i+2}^{\prime}, c\right) \ldots F_{2 x}\left(x_{k_{i}}^{\prime}, c\right)}{F_{2 x}\left(x_{i+1}^{\prime}, d\right) F_{1 x}\left(x_{i+2}^{\prime}, c\right) \ldots F_{1 x}\left(x_{k_{2}}^{\prime}, c\right)} F_{1 y}\left(b, y_{h}\right) \quad\left(k_{1}-i \text { is even }\right) \\ \frac{F_{2 x}\left(x_{i+1}^{\prime}, c\right) F_{1 x}\left(x_{i+2}^{\prime}, d\right) \ldots F_{2 x}\left(x_{k}^{\prime}, c\right)}{F_{1 x}^{\prime}\left(x_{i+1}^{\prime}, c\right) F_{2 x}^{\prime}\left(x_{i+2}^{\prime}, d\right) \ldots F_{1 x}\left(x_{k_{1}}^{\prime}, c\right)} F_{1 y}\left(b, y_{h}\right) \quad\left(k_{1}-i \text { is odd }\right)\end{array}\right.$
$\Theta_{2, i}=\left\{\begin{array}{l}F_{2 y}\left(b, y_{k}\right) \quad\left(i=k_{2}\right) \\ \frac{F_{2 y}^{\prime}\left(x_{i+1}^{\prime \prime}, c\right) F_{1 x}\left(x_{i+2}^{\prime \prime}, d\right) \ldots F_{1 x}\left(x_{k_{2}}^{\prime \prime}, d\right)}{F_{1 x}\left(x_{i+1}^{\prime \prime}, c\right) F_{2 x}\left(x_{i+2}^{\prime \prime}, d\right) \ldots F_{2 x}\left(x_{k_{2}}^{\prime \prime}, d\right)} F_{2 y}\left(b, y_{k}\right) \quad\left(k_{2}-i \text { is even }\right) \\ \frac{F_{1 x}\left(x_{i+1}^{\prime \prime}, d\right) F_{2 x}\left(x_{i+2}^{\prime \prime}, c\right) \ldots F_{1 x}\left(x_{k 2}^{\prime \prime}, d\right)}{F_{2 x}\left(x_{i+1}^{\prime \prime}, d\right) F_{1 x}\left(x_{i+2}^{\prime \prime}, c\right) \ldots F_{2 x}\left(x_{k_{2}}^{\prime \prime}, d\right)} F_{2 y}\left(b, y_{k}\right) \quad\left(k_{2}-i \text { is odd }\right)\end{array}\right.$

Equating the coefficients of Δy_{k} to zero, we obtain the last necessary condition

$$
\begin{align*}
& \sum_{i=1}^{k_{1}} \Theta_{1, i} \int_{x_{i}^{\prime}}^{x_{i+1}^{\prime}}\left[f_{0}^{+}-f_{0}^{-}-\frac{1}{2}\left(\lambda^{-}+\lambda^{+}\right)\left(f^{+}-f^{-}\right)\right] \frac{d x}{\theta_{1}}+ \\
& +\sum_{i=1}^{k_{2}} \Theta_{2, i} \int_{x_{i}^{\prime \prime}}^{x_{i+1}^{\prime \prime}}\left[f_{0}^{+}-f_{0}^{-}-\frac{1}{2}\left(\lambda^{-}+\lambda^{+}\right)\left(f^{+}-f^{-}\right)\right] \frac{d x}{\theta_{2}}= \tag{4.14}\\
& \quad=\varphi_{b}{ }^{+}-\varphi_{b}^{-}+a_{11}\left(b, y_{k}\right) \lambda\left(b, y_{k}\right)\left(z_{x}^{+}-z_{\lambda}^{-}\right)=0
\end{align*}
$$

Here $x_{1}^{\prime}=x_{1}^{\prime \prime}=a, \quad x_{k_{1}+1}^{\prime}=x_{k_{s}+1}^{\prime \prime}=b$

$$
\begin{aligned}
& \theta_{1}= \begin{cases}\left|F_{1 y}\right| & \left(k_{1}-i \text { is even }\right) \\
\left|F_{2 y}\right| & \left(k_{1}-i \text { is odd }\right)\end{cases} \\
& \theta_{2}= \begin{cases}\left|F_{1 y}\right| & \left(k_{2}-i \text { is odd }\right) \\
\left|F_{2 y}\right| & \left(k_{2}-i \text { is even }\right)\end{cases}
\end{aligned}
$$

Appendix. We consider the following hyperbolic differential equation [6, 7]:

$$
\begin{equation*}
a_{11} z_{x x}+a_{11} z_{x y}+a_{22} z_{y y}+a_{1} z_{x}+a_{2} z_{y}=f(x, y, z, u) \tag{A.1}
\end{equation*}
$$

Here we have used the notation of Sect. 1. We pass to the new variables s and N counted off along the tangent and the normal to curve C. We obtain

$$
\begin{gather*}
A_{1} z_{N N}+2 A_{2} z_{s N}+A_{3} z_{s s}+B z_{N}+\left(-a_{1} n_{2}+a_{2} n_{1}-2 \rho^{-1} A_{2}\right) z_{8}=f \tag{A.2}\\
A_{1}=a_{11} n_{1}^{2}+a_{12} n_{1} n_{2}+a_{22} n_{2}^{2} \\
A_{2}=-a_{11} n_{1} n_{2}+1 / a_{12}\left(n_{1}^{2}-n_{2}^{2}\right)+a_{22} n_{1} n_{2} \tag{A.3}\\
A_{3}=a_{11} n_{2}^{2}-a_{12} n_{1} n_{2}+a_{22} n_{1}^{2} \\
B=a_{1} n_{1}+a_{2} n_{2}+\rho^{-1} A_{3}
\end{gather*}
$$

Here ρ is the radius of curvature of $C ; n_{1}$ and n_{2} are the direction cosines of the normal. By z^{-}and z^{+}we denote the value of function z. to the left and to the right of curve C as we move along it in the direction of increasing s. Let z together with its derivative z_{N} be continuous on passing through C. Then, the derivatives $z_{s}, z_{3 .}, z_{\mathbf{s s}}$ are continuous, For $z_{N N}$ we have

$$
\begin{equation*}
A_{1}\left[z_{N N}\right]=[f],\left[z_{N N}\right]=z_{N N}^{-}-z_{N N}^{+},[f]=f^{-}-f^{+} \tag{A.4}
\end{equation*}
$$

Consequently, $\left[z_{N N}\right] \neq 0$ if $[f] \neq 0$ and line C is not a solution of the equation

$$
\begin{equation*}
A_{1}=a_{11}\left(\frac{d y}{d s}\right)^{2}-a_{12} \frac{d x}{d s} \frac{d y}{d s}+a_{22}\left(\frac{d x}{d s}\right)^{2}=0 \tag{A.5}
\end{equation*}
$$

i. . . is not a characteristic of Eq. (A.1). For a continuous right-hand side of Eq. (A.1) the derivative $z_{N N}$ can have a finite or an infinite discontinuity only on a characteristic line.

Having differentiated Eq. (A.2) with respect to N under the condition that C is a characteristic, we obtain the equation

$$
\begin{equation*}
2 A_{2}\left[z_{N N}\right]_{\mathrm{s}}+B\left[z_{N N}\right]=\left[f_{N}\right] \tag{A.6}
\end{equation*}
$$

showing that breaks in the continuity of the function $z_{N N}$ can arise from the boundary
conditions and from the discontinuity of the function f_{N}. If z is continuous but z_{N} is discontinuous on passing through the line C, this line must be a characteristic, and the magnitude of the discontinuity $\left[z_{N}\right]$ satisfies the differential equation

$$
\begin{equation*}
2 A_{2}\left[z_{N}\right]_{B}+B\left[z_{V}\right]=[f] \tag{A.7}
\end{equation*}
$$

Thus the source of the discontinuity of function z_{N} may be both the boundary conditions as well as the discontinuity of the right-hand side. If the function z is discontinuous, then for the magnitude of the discontinuity $[z]$ we obtain the equation

$$
\begin{equation*}
2 A_{2}[z]_{s}+\left(B-A_{1, ~}\right)[z]=0 \tag{A.8}
\end{equation*}
$$

showing that the discontinuities of function z can arise only as a result of the boundary conditions. A formula analogous to (A.8) (without the term containing $A_{1 N}$) occurs in [7].

The coefficient A_{2} of the derivative in Esq. (A.6)-(A.8) for the hyperbolic equation (A.1) for which $a_{13}^{3}-4 a_{11} a_{22}>\overline{0}$, is nonzero on characteristics. The equality $A_{2}=0$ defines two families of curves which may be taken as coordinate lines. In this case, instead of Eq. (A.1) we have Eq. (1.1) which we study subsequently. For it the equations for the characteristic have the form

$$
\begin{equation*}
\frac{d y}{d x}= \pm \sqrt{-\frac{a_{22}}{a_{11}}}, \quad \frac{a_{32}}{a_{11}}<0 \tag{A.9}
\end{equation*}
$$

and define a family of curves C_{1} with a positive slope $d y / d x>0$ and a family of curves C_{2} with a negative slope $d y / d x<0$. It can be shown that through each point, except the corner points, of the rectangular region $\Omega(a \leqslant x \leqslant b, c \leqslant y \leqslant d)$.there pass two characteristics C_{1} and C_{2}, while through the corner points, one characteristic C_{1} or C_{2}.

Let us compute the derivatives $d x / d s, d y / d s$ and the coefficients A_{i} on the characteristics. Directing s towards the increasing y, we have

$$
\begin{array}{cl}
\frac{d x}{d s}= \pm\left(1-\frac{a_{22}}{a_{11}}\right)^{-1 / 2}, & \frac{d y}{d s}=\left(1-\frac{a_{11}}{a_{22}}\right)^{-1 / 2} \tag{A.10}\\
A_{2 C_{\alpha}}= \pm V-a_{11} a_{22}, & A_{3 C_{\alpha}}=a_{11}+a_{22}
\end{array}
$$

Here the upper sign is taken for the family $C_{1}(\alpha=1)$, the lower, for the family C_{2} ($\alpha=$ 2). Carrying out analogous computations for the boundary lines, we find:
on the line $y=c$ (counting s in the direction of increasing x)

$$
\begin{equation*}
d x / d s \ldots 1, d y ; d s-1, A_{1 c}=u_{22}(x, c) . A_{3 c}=a_{11}(x, c) \tag{A.11}
\end{equation*}
$$

on the line $y=d$ (counting s in the direction of decreasing x)

$$
\begin{equation*}
d x / d s=-1, d y ; d s=0, A_{1 d}=a_{22}(r, d), A_{3 d}=a_{11}(x, d) \tag{A.12}
\end{equation*}
$$

on the line $x=a$ (counting s in the direction of decreasing y)

$$
\begin{equation*}
d x / d s=0, d y / d s=-1, A_{1 a}=a_{11}(a, y), A_{3 a}=a_{22}(a, y) \tag{A.13}
\end{equation*}
$$

on the line $x=b$ (counting s in the direction of increasing y)

$$
\begin{equation*}
d x / d s=0, d y / d s=1, A_{1 b}=a_{11}(b, y), A_{3 b}=a_{22}(b, y) \tag{A.14}
\end{equation*}
$$

Let us consider the variation of the families of characteristics C_{1} and C_{2}. Suppose that the equations

Fig. 5
C_{2} we can establish the relation

$$
\begin{equation*}
2 A_{2} \delta N_{6}=A_{1 N} \delta N \tag{A.17}
\end{equation*}
$$

Let us consider the variation of the point of intersection of the characteristics C_{1} and C_{2} (Fig. 5). To within terms of the first order of smallness we have

$$
\begin{align*}
& \left.\Delta x\right|_{M_{i j}}=n_{1 C_{1}} \delta N_{1}-n_{2 C_{1}} \Delta_{1}+n_{1 C_{2}} \delta N_{2}+n_{2 C_{2}} \Delta_{2} \tag{A.18}\\
& \left.\Delta y\right|_{M_{i j}}=n_{2 C_{1}} \delta N_{1}+n_{1 C_{1}} \Delta_{1}+n_{2 C_{2}} \delta N_{2}-n_{1 C_{2}} \Delta_{2}
\end{align*}
$$

From Fig. 5 we find

$$
\begin{gather*}
\operatorname{tg} \gamma=\frac{n_{1 C_{1}}^{2}-n_{2 C_{1}}^{2}}{2 n_{1} C_{1} n_{2 C_{1}}}=-\frac{n_{1 C_{2}}^{2}-n_{2 C_{2}}^{2}}{2 n_{1 C_{2}} n_{2 C_{2}}} \tag{A.19}\\
\Delta_{\alpha}=\operatorname{tg} \gamma \delta N_{\alpha} \quad(\alpha=1,2)
\end{gather*}
$$

Substituting expressions (A.19) into (A.18), we obtain

$$
\begin{align*}
\left.\Delta x\right|_{M_{i j}} & =\frac{1}{2 n_{1 C_{2}}} \delta N_{1}+\frac{1}{2 n_{1 C_{2}}} \delta N_{2} \tag{A.20}\\
\left.\Delta y\right|_{M_{i j}} & =\frac{1}{2 n_{2 C_{1}}} \delta N_{1}+\frac{1}{2 n_{2 C_{3}}} \delta N_{2}
\end{align*}
$$

BIBLIOGRAPHY

1. Egorov, A. I. . On optimum control of processes in distributed objects. PMM Vol. 27, No4, 1963.
2. Egorov, A.I., Necessary optimality conditions for distributed-parameter systems. Mat. Sb., Vol. 68, N 3 3, 1966.
3. Troitskii, V.A., The Mayer-Bolza problem of the calculus of variations in the theory of optimum systems. PMM Vol. 25, №4, 1961.
4. Troitskii, V.A., On variational problems of optimization of control processes. PMM Vol. 26, N81, 1962.
5. Lur'e, K. A., Optimal problems for distributed systems. Proc. Third All-Union Conf. Automatic Control (Engineering Cybernetics). Moscow, "Nauka", 1967.
6. Courant, R. and Hilbert, D., Methods of Mathematical Physics, Vol, 2, Mos-cow-Leningrad, 1945.
7. Polozhii, G. I. , Equations of Mathematical Physics. Moscow, "Vysshaya Shkola", 1964.
